Поиск в словарях
Искать во всех

Биологическая энциклопедия - физиология

Физиология

физиология

Большинство пурпурных серобактерий строгие анаэробы и облигатные фототрофы, т. е. рост их возможен только при освещении. Известно лишь три вида, растущие в присутствии воздуха, причем не только на свету, но и в темноте, хотя и медленно. Это A. roseus, Е. shaposhnikovii и Т. roseopersicina. Все несерные пурпурные бактерии также растут в анаэробных условиях, но в основном являются факультативными аэробами.

До недавнего времени считали, что рост пурпурных бактерий в темноте возможен лишь в аэробных или микроаэрофильных условиях, так как в отсутствие света они получают энергию в процессе дыхания. Однако недавно установлено, что R. rub rum и ряд представителей Rhodopseudomonas растут в темноте и в строго анаэробных условиях за счет сбраживания некоторых органических субстратов.

Такую же возможность, видимо, имеют пурпурные серобактерии Е. shaposhnikovii и Т. roseopersicina.Зеленые бактерии строгие анаэробы и облигатные фототрофы. Исключением являются представители рода Chloroflexis. Они растут только в аэробных условиях, причем и при освещении и в темноте. Однако даже фототрофные бактерии, хорошо растущие в темноте, лучше развиваются при наличии света.

В зависимости от организма оптимальные условия освещения для его роста могут быть различны. Одни виды хорошо растут при слабом освещении (100-300 лк), другие при более сильном свете (700-2000 лк).Хотя неоднократно отмечалось развитие фототрофных бактерий в горячих источниках с температурой воды 60-80 В°С, ни одного облигатно термофильного вида до сих пор не выделено.

Оптимальная температура для роста многих видов этих микроорганизмов в лабораторных условиях 25-35 В°С. Только Е. halophila имеет температурный оптимум около 47 В°С. В то же время известны пурпурные и зеленые серобактерии (Thiopedia, Lamprocystis, Pelodictyon), хорошо растущие при температуре не выше 20 В°С.Фототрофные бактерии в целом могут расти в достаточно широком интервале значений рН, примерно от 5,0 до 11,0, хотя для отдельных видов и штаммов оптимальное значение рН и зона, в которой возможен их рост, могут существенно различаться.

Для многих представителей пурпурных и зеленых бактерий оптимальное значение рН 7,0-7,5. Но известны виды, для которых оптимально значение рН 6,0-6,5. Для Rh. acidophila оно составляет даже 5,8. Напротив, некоторые, штаммы Е. shaposhnikovii хорошо растут при рН 8,5-9,0. Показано также, что оптимальное значение рН для роста фототрофных бактерий может несколько меняться в зависимости от состава среды.

Все фототрофные бактерии растут на простых синтетических средах, что облегчает выявление их потребности в отдельных элементах. Обязательными компонентами сред, кроме источников углерода и азота, естественно, являются фосфор, сера, калий и магний в виде минеральных солей. Установлено также, что эти микроорганизмы нуждаются в довольно большом количестве железа, но по сравнению с растениями проявляют значительно меньшую потребность в марганце.

Рост их зависит от концентрации кальция и наличия в небольших количествах таких элементов, как Mo, Со, Zn, Си и, ВИДИМО, других.Выше отмечалось, что фототрофные бактерии встречаются как в пресных, так и в соленых водоемах, причем некоторые пурпурные бактерии растут при концентрации хлористого натрия больше 20%. Наиболее галофильной формой является Е.

halophila. Оптимальная концентрация NaCl для этого организма 14-22%. Для других видов, даже выделенных из очень соленых водоемов, она более низкая. Зеленые бактерии растут при концентрации NaCl не более 10-11%. И для пурпурных и зеленых бактерий, выделенных из соленых водоемов, присутствие NaCl обязательно. Так, морские штаммы растут обычно хорошо в среде, содержащей 1-2% NaCl.

За исключением отдельных мутантов, все фототрофные бактерии используют в качестве источника азота соли аммония. Способность к ассимиляционной нитратредукции проявляется довольно редко. Некоторые пурпурные бактерии, в первую очередь несерные, используют как источники азота мочевину и различные аминокислоты, а также растут на средах с пептоном.

У многих пурпурных и зеленых бактерий установлена способность фиксировать молекулярный азот.В качестве источника серы для синтеза серусодержащих компонентов клеток несерные пурпурные бактерии и некоторые пурпурные серобактерии могут использовать сульфаты. Однако многие представители пурпурных серобактерий и зеленые серобактерии способностью к ассимиляционной сульфатредукции не обладают и могут использовать серу лишь в восстановленной форме, в виде сульфида, тиосульфата или цистеина.

Кроме того, пурпурные и зеленые серобактерии используют восстановленные соединения серы как доноры водорода (Н-доноры) при фотоассимиляции углекислоты. Все эти микроорганизмы способны окислять сероводород с образованием сульфатов, но сначала образуется молекулярная сера (рис. 128). У большинства пурпурных серобактерий сера откладывается в клетках.

Зеленые серобактерии и представители рода Ectothiorhodospira накапливают серу в среде. Кроме сульфида и молекулярной серы, многие пурпурные и зеленые серобактерии окисляют тиосульфат, а некоторые виды тетратионат, сульфит и тиогликолят.До последнего времени считали, что несерные пурпурные бактерии сероводород не окисляют и лишь для одного вида (Rh.

palustris) была показана способность окислять тиосульфат. Однако недавно установлено, что если поддерживать низкую концентрацию сульфида в проточных условиях культивирования, то такие несерные пурпурные бактерии, как R. rubrum, Rh. capsulata, Rh. palustris, Rh. spheroides, окисляют его и растут. При этом Rh. palustris образует сульфаты. У остальных видов окисление сульфида заканчивается образованием молекулярной серы, которая обнаруживается в среде.

Эти данные весьма важны, поскольку до сих пор деление пурпурных бактерий на серные и несерные основывалось на их способности окислять сероводород. Сейчас такой принцип оказывается неприемлемым. Поэтому предлагается учитывать, что пурпурные серобактерии окисляют сероводород до сульфатов через образование молекулярной серы, а несерные пурпурные бактерии окисляют его только до серы или до сульфатов, но без накопления серы как промежуточного продукта.

Не исключено, однако, что в дальнейшем эти критерии также нельзя будет использовать.Кроме соединений серы, многие пурпурные и зеленые бактерии способны окислять молекулярный водород.Большинство представителей несерных пурпурных бактерий нуждается в одном или нескольких витаминах группы В: тиамине, биотине, никотиновой, параминобензойной кислотах.

Потребность в витаминах не выявлена лишь у Rhodomicrobium vannielii, Rh. acidophila и Rhodospirillum tenue. Среди пурпурных и зеленых серобактерий значительно больше организмов, которые не нуждаются в витаминах.Однако есть виды и штаммы, требующие готового витамина В12. Такую потребность проявляют, например, крупные формы Chromatium (Chr. okenii, Chr. buderi и другие), а также Thiospirillum jenense.

Фотосинтезирующие бактерии делят на фотоавтотрофы и фотогетеротрофы. К первым принадлежит ряд пурпурных и зеленых серобактерий, а также отдельные представители несерных пурпурных бактерий, способные расти на чисто минеральных средах. Для таких микроорганизмов единственным источником углерода может служить углекислота, обычно вносимая в виде бикарбоната.

К фотогетеротрофам относят большинство несерных пурпурных бактерий, поскольку они растут лишь при наличии органических соединений. Строго говоря, к автотрофам нельзя причислять и фотосинтезирующих бактерий, которые нуждаются в готовых витаминах. С другой стороны, следует отметить, что фотогетеротрофные бактерии часто фиксируют в больших количествах углекислоту.

В то же время все автотрофные представители этих микроорганизмов способны использовать готовые органические соединения, хотя возможности в этом отношении у разных видов неодинаковы.Более разнообразные органические соединения могут использовать несерные пурпурные бактерии. К их числу относятся низшие жирные кислоты от С1 (муравьиная) до С9 (пеларгоновая), дикарбоновые кислоты, оксии кетокислоты (от С3 до С6), такие, как пировиноградная, молочная, яблочная, янтарная и др.

Используются некоторые сахара (в частности, глюкоза, фруктоза, манноза), спирты (этанол, изопропанол, маннит, сорбит), соединения ароматического ряда (бензоат, параоксибензоат, манделат, катехин), а также другие циклические соединения. Однако спектр органических субстратов, обеспечивающих рост различных видов и штаммов этих микроорганизмов, неодинаков.

Пурпурные и особенно зеленые серобактерии, как правило, используют меньшее число органических соединений; чаще всего отдельные органические кислоты. У некоторых видов возможности исчерпываются потреблением ацетата и пирувата.Для несерных и некоторых пурпурных серобактерий (Е. shaposhnikovii, Chr. vinosum) органические соединения могут служить источниками углерода и Н-донорами при фотоассимиляции углекислоты, а также в других восстановительных процессах.

Ряд видов способен в темноте окислять органические соединения с получением энергии, обеспечивающей их рост. У зеленых и многих пурпурных серобактерий способности ограничиваются использованием органических соединений при фотосинтезе лишь как дополнительных (по отношению к СО2) источников углерода. .
Рейтинг статьи:
Комментарии:

См. в других словарях

1.
  (от греч. physis природа и ...логия), наука, изучающая процессы жизнедеятельности (функции) животных и растит, организмов, их отд. систем, органов, тканей и клеток. Физиологию человека и животных разделяют на неск. тесно связанных между собой дисциплин. Общая Ф. исследует природу процессов, общих для организмов разл. видов, а также общие закономерности реакции организма и его структур на воздействие внеш. среды (напр., электрофизиология изучает элект-рич. явления в организме, Ф. развития закономерности видового и индивидуального развития функций, экологич. Ф.основы адаптационных приспособлений к разл. условиям существования). Ф. отд. классов и групп (напр., с.-х. животных, птиц), отд. органов (напр., печени) или систем (напр., нервной) является предметом исследования частной специальной Ф. Функциональные особенности организма человека в специфич. условиях жизнедеятельности изучает прикладная Ф. (авиац. Ф., кос-мич. Ф., подводная Ф., Ф. труда и др.). Спец. физиол. дисциплиной является патологическая Ф. , к-рая в отличие от нормальной Ф. выясняет закономерности развития и течения патологич. процессов в организме. Первые данные о физиол....
Биологический энциклопедический словарь

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):