Поиск в словарях
Искать во всех

Физическая энциклопедия - фотометрия

 

Фотометрия

фотометрия
раздел физ. оптики, в к-ром рассматриваются энергетич. характеристики оптического излучения в процессах его испускания, распространения и взаимодействия с веществом. При этом энергия излучения усредняется по малым интервалам времени, к-рые, однако, значительно превышают период исследуемых эл.

-магн. колебаний. Ф. включает в себя как экспериментальные методы и средства измерений фотометрических величин, так и опирающиеся на эти величины теоретического положения и расчёты. Осн. энергетич. понятием Ф. является поток излучения Фе, имеющий физ. смысл мощности, переносимой эл.-магн. излучением. Пространств. распределение Фe описывают энергетические фотометрические величины, производные от потока излучения по площади и (или) телесному углу.

В фотометрии импульсной применяются также интегральные по времени фотометрич. величины. В узком смысле Ф. иногда наз. измерения и расчёт величин, относящихся к наиболее употребительной системе редуцированных фотометрических величин системе световых величин, редуцированных в соответствии со спектральной чувствительностью т.

н. среднего светло-адаптированного человеческого глаза (см. АДАПТАЦИЯ ГЛАЗА), СВЕТОВЫЕ ВЕЛИЧИНЫ). Изучение зависимостей фотометрич. величин от длины волны излучения и спектр. плотностей энергетич. величин составляет предмет спектрофотометрии и спектрорадиометрии. Фундаментальный для Ф. закон Е=I/r2, согласно к-рому освещённость Е изменяется обратно пропорционально квадрату расстояния r от точечного источника с силой света I, был сформулирован нем. астрономом И. Кеплером в 1604. Однако основоположником экспериментальной Ф. следует считать франц. физика П.

Бугера, предложившего в 1729 визуальный метод количеств. сравнения источников света установления (путём изменения расстояний до источников) равенства освещённостей соседних поверхностей с использованием в качестве прибора глаза. Методы визуальной Ф. применяются в отд. случаях до наст. времени (2-я пол. 20 в.) и в результате работ сов.

учёных, к-рые ввели понятие эквивалентной яркости, распространены на область малых яркостей. В зависимости от используемых методов измерения фотометрич. величин Ф. условно делят на визуальную, фотогр., фотоэлектрическую и т. д. Начатое нем. физиком И. Ламбертом (1760) развитие теоретич. методов Ф. нашло обобщённое выражение в теории светового поля, доведённой до стройной системы А.

А. Гершуном (30-е гг. 20 в.). Совр. теоретич. Ф., использующая понятие светового вектора, распространена на мутные среды. Теоретич. Ф. основывается на соотношении dФе=LеdG, выражающем в дифференциальной форме закон квадратов расстояний; здесь dФедифференциал потока излучения элементарного пучка лучей, dG дифференциал геометрического фактора, Leэнергетич.

яркость излучения. Фотометрич. свойства в-ва и тел характеризуются коэффициентом пропускания т, коэффициентом отражения r и коэффициентом поглощения а, к-рые для одного и того же тела связаны очевидным соотношением t+r+a=1. Ослабление потока излучения узконаправленного пучка при прохождении через в-во описывается Бугера Ламберта Бера законом.

Экспериментальные методы Ф. основаны на абс. и относит. измерениях потока излучения разл. селективными и неселективными приёмниками излучения. Для определения размерных фотометрич. величин применяют фотометры либо с непосредств. сравнением неизвестного и известного потоков излучения, либо предварительно градуированные в соответствующих единицах измерения энергетич.

или редуцир. фотометрич. величин. В частности, для передачи значений световых величин обычно используют сличаемые с гос. световыми эталонами образцовые и рабочие светоизмерительные лампы источники с известными фотометрич. характеристиками. Ф. лазерного излучения в основном использует образцовые и рабочие неселективные приёмники излучения, сличаемые с гос.

эталонами мощности и энергии когерентного излучения лазеров. Измерение безразмерных величин t и r выполняется фотометрами с применением относительных методов, путём регистрации отношения реакций линейного приёмника излучения на соответствующие потоки излучения. Применяется также уравнивание реакций линейного или нелинейного приёмника излучения изменением по определённому закону в известное число раз сравниваемых потоков излучения.

Теоретич. и экспериментальные методы Ф. находят применение в светотехнике и технике сигнализации, в астрономии и астрофизике для исследования космич. источников излучения, при расчёте переноса излучения в плазме газоразрядных источников света и звёзд, при хим. анализе в-в, в пирометрии, при расчётах теплообмена излучением и во мн.

др. областях науки и производства. .
Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):