Поиск в словарях
Искать во всех

Физическая энциклопедия - ускорители

 

Ускорители

ускорители

заряженных частиц, устройства для получения заряж. ч-ц (эл-нов, протонов, ат. ядер, ионов) больших энергий с помощью их ускорения в электрич. поле. Помимо физ. применений, играющих определяющую роль в развитии ускорит. техники, У. начинают всё больше использоваться за пределами физики (химия, биофизика, геофизика) и в прикладных целях (дефектоскопия, стерилизация продуктов, лучевая терапия и т.

п.). У. заряженных ч-ц следует отличать от плазменных ускорителей, в которых осуществляется ускорение электрически нейтральных образований из заряженных частиц. Классификация ускорителей. По способу получения ускоряющего поля различают обычные («классические») У., в к-рых ускоряющее поле создаётся внеш.

радиотехнич. устройствами (генераторами), и У., в к-рых ускоряющее поле создаётся другими заряж. ч-цами (электронным пучком, электронным кольцом, плазменными волнами; (см. КОЛЛЕКТИВНЫЕ МЕТОДЫ УСКОРЕНИЯ)). По типу ускоряемых ч-ц различают электронные У., протонные У. и У. ионов, а по хар-ру траекторий ч-ц линейные У. (траектории близки к прямым линиям) и циклические (траектории близки к окружности или спирали).

По хар-ру ускоряющего поля У. разделяются на резонансные, в к-рых ускорение производится высокочастотным электрич. полем и ускоряемые ч-цы движутся в резонанс с изменением поля, и нерезонансные, в к-рых направление поля за время ускорения не изменяется.

В свою очередь, последние делятся на индукционные У., где электрич. поле создаётся за счёт изменения магн. поля, и высоковольтные У., в к-рых ускоряющее поле обусловлено приложенной разностью потенциалов. Историческая справка. В начальный период (1919-32) развитие У. шло по пути создания генераторов высоких напряжений и их использования для непосредств.

ускорения заряж. ч-ц в постоянном электрич. поле. Заряж. ч-цы, проходя от одного полюса источника высокого напряжения к другому, ускорялись в соответствии с величиной напряжения. Этот период завершился разработкой электростатического генератора (амер. физик Р. Ван-де-Грааф, 1931) и каскадного генератора (англ. физики Дж. Кокрофт и Э.

Уолтон, 1932). Такие устройства, применяемые до сих пор, позволяют получить потоки ускоренных ч-ц с энергией =106 эВ (см. ВЫСОКОВОЛЬТНЫЙ УСКОРИТЕЛЬ). В 1931-44 развиваются резонансные методы, в к-рых ускорение производится перем. ВЧ полем. Проходя многократно через ускоряющий промежуток, ч-ца набирает большую энергию даже при невысоком ускоряющем напряжении.

Резонансное ускорение в линейных У. тогда не получило распространения из-за недостаточного развития радиотехники. Основанные же на этом методе циклич. У.циклотроны (амер. физик Э. О. Лоуренс) вскоре обогнали в своём развитии высоковольтные У. и позволили получить протоны с энергией 10-20 МэВ. В 1940 (амер. физик Д. У. Керст) удалось реализовать циклич.

У. эл-нов индукц. типа (бетатрон), идея к-рого выдвигалась ещё в 20-е гг. Разработка У. совр. типа началась с открытия механизма автофазировки (1944-45, В. И. Векслер и независимо амер. физик Э. М. Макмиллан), позволившего существенно повысить энергию ускоренных ч-ц в резонансных У. На основе этого принципа разработаны неск. типов циклич.

У.: синхротрон, фазотрон, синхрофазотрон, микротрон. Развитие радиотехники дало возможность создать эфф. линейные резонансные У. Предложенная идея знакопеременной фокусировки (Н. Кристофилос, 1950, Э. Курант, М. Ливингстон, X. Снайдер, США, 1952) существенно повысила достижимую энергию в циклич. и линейных У. Предельная энергия для эл-нов (=20 ГэВ) достигнута на линейных У., для протонов (>500 ГэВ) на циклич.

У. Развитие У. идёт как по пути увеличения энергии ускоренных ч-ц, так и по пути улучшения хар-к ускоренного пучка увеличения его интенсивности и длительности импульса, уменьшения разброса его параметров (качество пучка). Значит. прогресс будет достигнут в связи с применением сверхпроводников в магнитах и ускоряющих системах, внедрением методов автоматич управления, введением в ускорит.

комплекс накопит. колец и систем встречных пучков, расширяющих возможности У. Параллельно развитию перечисленных «классич.» У. разрабатываются коллективные методы ускорения, идея к-рых была выдвинута Векслером (1956). Они обещают существенно более высокий темп ускорения, чем в современных У. Резонансные методы ускорения наиболее широко распространены в совр.

У. В резонансных У. ч-цы движутся в вакуумных камерах, в к-рых создаётся высокий вакуум (10-6-10-8 мм рт. ст.) для ослабления рассеяния ч-ц в газе. Непрерывное ускорение обеспечивается тем, что ч-цы попадают в ускоряющий промежуток всё время в ускоряющей фазе перем. ВЧ электрич. поля, т. е. когда сила действия электрич. поля направлена в сторону движения ч-ц. Проходя многократно через ускоряющий промежуток, ч-ца может набрать большую энергию даже при сравнительно невысоком напряжении на нём. Идеальная, т, н. равновесная, ч-ца всё время попадает в одну и ту же, равновесную фазу j0 поля.

При каждом прохождении ускоряющего промежутка она набирает энергию eV0cosjo, где е заряд ч-цы, a V0 амплитуда ускоряющего напряжения. Чтобы набрать большую кинетич. энергию Wмакс, частица должна совершить очень большое число N=Wмакс/eV0cosj0 прохождений через ускоряющий промежуток. Поэтому для работы У. необходимо обеспечить устойчивость равновесного движения ч-цы: небольшие отклонения в начальных данных для ч-ц или небольшие внеш.

возмущения (неизбежные отклонения параметров установки от расчётных, рассеяние на остаточном газе в ускорит. камере и т. п.) не должны приводить к сильному отклонению от равновесной орбиты, т. е. ч-ца должна совершать колебат. движение около равновесной ч-цы. Обеспечение устойчивости движения ч-ц в направлениях, перпендикулярных траектории, наз.

фокусировкой, а в направлении траектории фазировкой. Фазировка обеспечивается в резонансных У. механизмом автофазировки, обусловленным зависимостью промежутка времени между двумя следующими друг за другом ускорениями от энергии ? ч-ц. Благодаря этому одна из двух равновесных фаз j0 или -j0, для к-рых прирост энергии eV0cosj0 обеспечивает точный резонанс, оказывается устойчивой, т.

е. около неё существует область захвата, внутри к-рой ч-цы колеблются по фазе относительно равновесной фазы. Если дТ/д?>0, то устойчива фаза +j0, лежащая на спадающем склоне кривой напряжения, если дT/дtds0, т. е. убывания поля с увеличением радиуса. Движение в радиальном направлении определяется соотношением между силой действия магн. поля eBv/c и центростремит. силой mv2/R, соответствующей радиусу R. Для устойчивости в радиальном направлении нужно, чтобы сила F=eBv/c убывала медленнее, чем mv2/R, т. е. чтобы магн. поле убывало медленнее, чем 1/R, что сводится к условию n .
Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):