Поиск в словарях
Искать во всех

Химическая энциклопедия - кристаллического поля теория

 

Кристаллического поля теория

кристаллического поля теория
квантовохим. теория, в к-рой низшие по энергии состояния молекулы описываются как состояния одного атома (иона), находящегося в электростатич. поле, созданном остальными частицами. Как правило, К. п. т. применяется к координац. соед., кристаллам и др. системам, в структуре к-рых можно выделить центр. атом и окружающие его ионы или молекулы (в случае координац. соед. -лиганды). Лиганды моделируют системой точечных зарядов или диполей, а создаваемое ими электростатич. поле рассматривают по аналогии с внутрикристаллич. полем, к-рое обусловлено положит. и отрицат. зарядами ионов в кристалле. Поэтому такое приближение наз. теорией кристаллич.

поля. В рамках К. п. т. предполагается, что энергия электронного возбуждения лигандов намного больше, чем энергия возбуждения центр. атома, а взаимод. лигандов и центр. атома не очень сильно. Поэтому низшие по энергии электронные состояния комплекса в целом рассматривают как состояния центр. атома (иона), изменившиеся по сравнению с состояниями своб.

атома под действием электростатич. поля лигандов. Эти изменения оценивают методами возмущений теории. К. п. т. позволяет установить относит. положение энергетич. уровней и энергии переходов между ними для молекулы или кристалла при заданном расположении лигандов в пространстве, изучить изменение энергетич. уровней при замещении лигандов или центр.

атома, при изменении геом. строения комплекса, появлении на пов-сти кристалла адсорбир. частиц и др. Электронное строение атомов или ионов в кристалле и мол. комплексах определяется мн. факторами, среди к-рых К. п. т. выделяет два: энергия взаимод. лигандов с центр. атомом и энергия межэлектронного отталкивания, характеризующая состояние валентных электронов центр.

атома. Характерное для атома в данной степени окисления отталкивание электронов не меняется в разных комплексах, а интенсивность поля лигандов возрастает в экспериментально установленном (т. наз. спектрохим.) ряду: I-<Вr-<Сl-<F-<ОН -<Н 2 О<NH3<NO2-<CN-, что позволяет различить два предельных случая: 1) слабое поле: межэлектронное отталкивание намного больше, чем воздействие поля лигандов.

В этом случае за основу берут детально изученные спектроскопич. методами состояния многоэлектронного атома, а влияние лигандов учитывают с помощью теории возмущений. 2) Сильное поле: воздействие лигандов на центр. атом больше, чем влияние межэлектронного отталкивания. В этом случае сначала изучают состояния отдельных электронов атома в поле лигандов, а затем учитывают поправки на межэлектронное взаимодействие.

Оба подхода были бы эквивалентны, если бы ур-ние Шрёдингера для атома в поле лигандов решалось точно, однако при приближенном решении этого ур-ния с учетом наиб. важных вкладов в энергию физически правильное описание каждого комплекса дает, как правило, лишь один из подходов. Для свободного сферически симметричного атома обычно имеет место вырождение энергетических уровней, поэтому для качеств.

анализа в рамках К. п. т. достаточно учесть симметрию расположения лигандов (следовательно, симметрию создаваемого ими поля) и методами теории групп описать снятие вырождения под действием поля лигандов. Особенно просто выполнить анализ, рассматривая состояния отдельных электронов в атоме. Напр., комплекс [Fe(CN)6]4- имеет октаэдрич.

строение, а своб. иону Fe2+ отвечает электронная конфигурация d6. Вырождение пяти d-орбиталей иона снимается частично в октаэдрич. поле (рис. 1), что приводит к образованию двукратно вырожденного уровня е g и трехкратно вырожденного уровня t2g. Расчет методами теории групп показывает, что если за начало отсчета энергии принять энергию d-уровня, то энергии уровней е д и .

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):