Поиск в словарях
Искать во всех

Химическая энциклопедия - твердые растворы

 

Твердые растворы

твердые растворы

однородные (гомогенные) крис-таллич. фазы переменного состава; образуются в двойных или многокомпонентных системах. Если компоненты системы неограниченно р-римы друг в друге, они образуют непрерывный ряд Т. р. Чаще, однако, концентрация растворенного в-ва не может превышать нек-рое предельное значение и существование Т. р. ограничено нек-рыми областями составов (области гомогенности). Т. р. являются мн. метал-лич. сплавы и неметаллич. системы минералы, стекла, полупроводники, ферриты.

Типы диаграмм состояния. На диаграмме состояния двойных систем в координатах т-ра-состав образованию непрерывных Т. р. отвечают три типа линий ликвидуса и солидуса (рис. 1, а, б и в), отграничивающих области существования жидкой фазы (расплава) и Т. р. (Ж и a соотв.) и область сосуществования обеих фаз (Ж + a). Тип бвстречается крайне редко, гл. обр. в случае оптич. изомеров орг. в-в. В системах с непрерывными Т. р., согласно принципу соответствия (см. Физико-химический анализ), должна быть только одна кривая ликвидуса и одна кривая солидуса. Поэтому в точке минимума или максимума происходит плавный переход одной части кривой в другую.

Рис. 1. Диаграммы состояний двойных систем в координатах т-ра Т-состав А-В: Ж-жидкая фаза (расплав), a-непрерывный твердый р-р, Т А и остаются в равновесии два Т. р. a и b, составы к-рых по мере снижения т-ры изменяются в соответствии с ходом линий GM и FN (рис. 2, а). Образование подобных Т. р. наблюдается, напр., в системах Сu-Ag, Pb-Sn. Во втором случае Т. р. Образуют перитектику-нонвариантную точку также трехфазного равновесия, но расположенную по одну сторону от точек состава Т. р. (точка Р, рис. 2,б). Примером системы пе-ритектич. типа может служить Cd-Hg.

Рис. 2. Диаграммы состояния двойных систем с ограниченными по составу твердыми р-рами a и b: а-система с эвтектич. точкой Е; б -система с пери-тектич. точкой Р. Остальные обозначения те же, что и на рис.'1.

На линиях ликвидуса ограниченных Т. р. иногда встречаются экстремальные точки-минимум или (чаще) максимум. Последнее характерно для солевых и оксидных систем только в случае гетеровалентных Т. р. (см. ниже) с переменным числом ионов в элементарной ячейке, напр. Т. р. Y2 О 3 в ZrO2. Повышение температуры плавления при образовании такого Т. р., напр. DyF3 в PbF2, м. б. настолько сильным, что температура плавления эвтектич. смеси (957 °С) становится выше температуры плавления компонента (для PbF2 824 °С).

Распад Т. р. Предельная концентрация Т. р. зависит от т-ры и давления. При понижении т-ры взаимная р-римость компонентов, как правило, понижается. Влияние давления неоднозначно, для большинства систем повышение давления приводит к уменьшению взаимной р-римости.

Рис. 3. Распад непрерывного твердого р-ра с образованием двухфазной системы. Жирная линия бинодаль, отделяющая область существования твердого р-ра от области сущестзова-ния двухфазной системы.

При охлаждении однородного р-ра ниже критич. т-ры р-римости (смешения) (точка К) образуется двухфазная система, состоящая из несмешивающихся Т. p. a1 и a2 (рис. 3), составы к-рых изменяются с т-рой по линиям KL и KN соответственно. Др. тип распада Т. р. a наблюдается, если компоненты А и В могут образовать хим. соед. А m В n (рис. 4), характеризующееся упорядоченным расположением частиц (атомов или ионов) в кристаллической решетке, в отличие от статистического беспорядка в расположении частиц, характерного для Т. р. На основе А m В n образуется Т. р. b с компонентами А и В. Превращение в упорядоченную фазу (сегрегация) может происходить как фазовый переходII рода. При этом выше температуры перехода вероятности заполнения к.-л. кристаллографич. позиции разл. атомами (ионами) равны, а ниже точки перехода различаются.

Рис, 4. Распад непрерывного твердого р-ра с образованием хим. соед. А m В n. Жирная линия-т-ра начала кристаллизации твердого р-ра b на основе А m В n.

Полиморфизм. С полиморфным превращением в-ва, на основе к-рого образуется Т. р;, всегда связано и превращение Т. р. На рис. 5 приведены диаграммы состояния систем с наиб. часто встречающимися вариантами полиморфного превращения. При эвтектоидном превращении (рис. 5, а) т-pa трехфазного равновесия (точка E') T. р. a и b, образующихся на основе двух модификаций компонента А, с Т. р. g на основе компонента В расположена ниже т-ры Т н полиморфного превращения, а область гомогенности Т. р. на основе низкотемпературной модификации (b) уже, чем на основе высокотемпературной (a); при перитектоидном (рис. 5, б)-наоборот.

Рис. 5. Диаграммы состояния двойных систем с полиморфным превращением твердого р-ра по эвтектоидному типу (а) и по перитеггоидному типу ( б).

Типы Т. р. В Т. р. замещения растворенное в-во замещает исходное-атом на атом, ион на ион или молекула на молекулу. При этом число частиц (атомов, молекул) в элементарной кристаллич. ячейке остается постоянным. Один из важнейших факторов, определяющих возможность образования Т. р. замещения,-это размеры замещающих друг друга атомов (ионов, молекул). Согласно правилу Гольдшмидта, для образования широких по составу областей гомогенности Т. р. при т-рах, далеких от т-р плавления компонентов, разница Dr в ионных радиусах замещающих друг друга ионов не должна превышать 15%, т. е. отношение Dr/r15% (r-меньший радиус). Аналогичное правило 15%-ного различия атомных диаметров для Т. р. металлов и ковалентных в-в было установлено В. Юм-Розери (1934). В настоящее время чаще используется др. размерный фактор-межатомное расстояние R. Для хим. соединения с преим. ионной связью непрерывные Т. р. замещения образуются при всех т-рах, если DR/R < 4 Ч 5% (А. С. Поваренных, 1964). Если DR/R лежит в пределах от 15 до 20-25%, то даже при высоких т-рах образуются только ограниченные Т. р., а при DR/R >20-25% заметное взаимное растворение отсутствует. Используют и др. размерные факторы: параметры кристаллич. решетки, молярные объемы и т. п. При этом роль размерных факторов зависит от типа хим. связи. Чем сложнее хим. соед., тем, как правило, шире области гомогенности Т. р. замещения. В случае молекулярных кристаллов, в частности органических, возможность образования Т. р. замещения определяется не только размером, но и конфигурацией молекул.

Размерный фактор не всегда является решающим. Напр., NaCl и PbS не образуют Т. р., хотя их размерные факторы (радиусы ионов, межатомные расстояния и др.) близки. Второй необходимый фактор-хим. подобие компонентов, в частности близость типа хим. связи. В качестве параметра, определяющего возможность образования Т. р. замещения, используют различие в степени ионности связи, иногда -разность электроотрицательностей атомов замещающих друг друга элементов. Предложено использовать в качестве характеристик хим. подобия т-ры плавления хим. соед. или энергии 17 кристаллич. решеток. Для образования непрерывных Т. р. замещения требуется, чтобы DT пл/T пл27%, DU/U < 10%. В случае мол. кристаллов важное значение имеет наличие у обоих компонентов водородных связей, а также существование у молекул собств. дипольного момента. В частности, практически неизвестны Т. р. на основе льда, т. к. нет подобных ему в-в по указанным характеристикам.

В Т. р. внедрения атомы (молекулы) растворенного в-ва располагаются в междоузлиях кристаллич. решетки, образованной в-вом-основой Т. р., или в стехиометрич. вакансиях. В результате число атомов (молекул) в элементарной ячейке кристалла увеличивается. Классич. пример Т. р. внедрения-р-ры неметаллов H, N, С, О в металлах. В Т. р. на основе In2 Те 3, обладающего дефектной структурой типа сфалерита, примесные атомы Sb, Bi, In и др. располагаются в стехиометрич. вакансиях. Т. р. внедрения являются р-ры воды в цеолитах- молекулы воды располагаются в полостях структуры осн. в-ва. При образовании Т. р. внедрения не требуется близости типа хим. связи, а размерный фактор может играть роль, противоположную Т. р. замещения, а именно: макс. взаимной р-римости компонентов благоприятствует наиб. разница их атомных радиусов.

В Т. р. вычитания число атомов в элементарной ячейке кристалла уменьшается по сравнению с чистым компонентом. Такие Т. р. часто образуются на основе нестехиомет-рич. соединении. Так, в сульфиде железа Fe1-xS, к-рый можно рассматривать как Т. p. S в FeS, в действительности имеются своб. октаэдрич. пустоты -катионные вакансии-вследствие того, что часть атомов железа имеет степень окисления III. Т. р. калия в КСl-также Т. р. вычитания. В его решетке существуют анионные вакансии, в к-рых локализуются электроны, что обеспечивает электрич. нейтральность кристаллич. решетки. В пределах области гомогенности одной и той же фазы могут наблюдаться как Т. р. внедрения, так и Т. р. вычитания, поэтому иногда эти типы Т. р. объединяют под назв. "Т. р. с переменным числом атомов в элементарной ячейке".

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):