Поиск в словарях
Искать во всех

Математическая энциклопедия - штурма - лиувилля уравнение

Штурма - лиувилля уравнение

штурма - лиувилля уравнение

обыкновенное дифференциальное уравнение 2-го порядка вида

рассматриваемое на конечном или бесконечном интервале ( а, b)изменения переменном х, где р(х), l (х), r (х) - заданные коэффициенты, комплексный параметр, a у - искомое решение. Если р(x),r (х) положительны и р(х)имеет первую производную, а р(х)r(х) - вторую производную, то с помощью подстановки Лиувилля (см. [1]) это уравнение сводится к стандартному виду

Предполагается, что комплексная функция q(x) измерима в интервале ( а, b) и суммируема в каждом его внутреннем подинтервале. Наряду с уравнением рассматривается также неоднородное уравнение

где f(x) - заданная функция.

Если функция f(x)измерима в интервале ( а, b) и суммируема в каждом его внутреннем подинтервале, то каковы бы ни были комплексные числа с 0, с 1 и какова бы ни была внутренняя точка х 0 интервала ( а, b), уравнение (2) имеет в интервале ( а, b) одно и только одно решение удовлетворяющее условиям Для каждого функция является целой аналитич. цией В качестве точки х 0 можно взять также и конечный конец интервала ( а, b )(если этот конец регулярен).

Пусть и какие-нибудь два решения уравнения (1). Их вронскиан

не зависит от хи равен нулю тогда и только тогда, когда эти решения линейно зависимы. Общее решение уравнения (2) представляется в виде

где

а 1, а 2 произвольные постоянные, a линейно независимые решения уравнения (1).

Справедлива следующая фундаментальная теорема Штурма (см. [1]): пусть даны два уравнения

.

если q1(x), q2 (х) действительны и q1(x)<q2(x)во всем интервале ( а, b), то между каждыми двумя нулями любого нетривиального решения первого уравнения заключен, по крайней мере, один нуль каждого решения второго уравнения.

Следующая теорема известна под названием теоремы сравнения (см. [1]): пусть левый конец интервала (a, b) конечен и и(х)есть решение уравнения (3), удовлетворяющее условиям а v(x) решение уравнения (4) с теми же условиями; кроме того, пусть q1(x)<q2(x)во всем интервале ( а, b); тогда если и(х)в интервале ( а,b) имеет тнулей, то v(x)втом же интервале имеет не меньше m нулей и k-й нуль v(х)меньше k- гонуля и(х).

Одним из важных свойств уравнения (1) является существование для него так наз. операторов преобразования, имеющих простую структуру. Операторы преобразования возникли из общих алгебраич. соображений, связанных с теорией операторов обобщенного сдвига (преобразование базиса).

Для уравнения (1) существуют следующие типы операторов преобразования. Пусть решение уравнения

удовлетворяющее условиям

Оказывается, что это решение допускает представление

где К( х,t) - непрерывная не зависящая от функция. причем

Интегральный оператор I+ К, определенный формулой

наз. оператором преобразования, сохраняющим условия в точке х=0. Он переводит функцию (решение простейшего уравнения при условиях (6)) в решение уравнения (5) при тех же данных в точке х=0.

Пусть и решения уравнения (5), удовлетворяющие условиям

Эти решения допускают представления

где и непрерывные функции.

Введен (см.[8]|) новый вид операторов преобразования, сохраняющих асимптотику решений на бесконечности, а именно, оказалось, что для всех из верхней полуплоскости уравнение (5), рассматриваемое на полуоси при выполнении условия имеет решение представимое в виде

где функция К( х, t )является непрерывной и удовлетворяет неравенству

в к-ром

Кроме того,

Лит.:[1] Левитан Б. М., Саргсян И. С., Введение в спектральную теорию, М., 1970; [2] Наймарк М. А., Линейные дифференциальные операторы, 2 изд., М., 1969; [3] Левитан Б. М., Теория операторов обобщенного сдвига, М., 1973; [4] Марченко В. А., Операторы ШтурмаЛиувилля и их приложения, К., 1977; [5] Dе1sarte J., лС. r. Acad. sci.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):