Поиск в словарях
Искать во всех

Математическая энциклопедия - неевклидовы геометрии

Неевклидовы геометрии

неевклидовы геометрии

в буквальном понимании все геометрич. системы, отличные от геометрии Евклида; однако обычно термин "Н. г." применяется лишь к геометрич. системам (отличным от геометрии Евклида), в к-рых определено движение фигур, причем с той же степенью свободы, что и в геометрии Евклида. Степень свободы движения фигур в евклидовой плоскости характеризуется тем, что каждая фигура без изменения расстояний между ее точками может быть перемещена так, чтобы любая выбранная ее точка заняла любое заранее назначенное положение; кроме того, каждая фигура может вращаться вокруг любой своей точки. В евклидовом трехмерном пространстве каждая фигура может быть перемещена так, чтобы любая выбранная ее точка заняла любое заранее назначенное положение; кроме того, каждая фигура может вращаться вокруг любой оси, проходящей через любую ее точку.

Среди Н. г. особое значение имеют Лобачевского геометрия и Римана геометрия, к-рые чаще всего и подразумеваются, когда говорят о Н. г. Геометрия Лобачевского первая геометрпч. система, отличная от геометрии Евклида, и первая более общая теория (включающая евклидову геометрию как предельный случай). Геометрия Римана, открытая позднее, в нек-рых отношениях противоположна геометрии Лобачевского, но вместе с тем служит ей необходимым дополнением. Совместное исследование геометрий Евклида, Лобачевского и Римана позволило в должной мере выяснить особенности каждой из них, а также их связи друг с другом и с другими геометрич. системами. Ниже обе Н. г. и геометрия Евклида сопоставляются как синтетич. теории, затем в плане дифференциальной геометрии и, наконец, в плане теории групп.

Неевклидовы геометрии как синтетические теории. Геометрия Лобачевского строится на основе тех же аксиом, что и евклидова, за исключением только одной аксиомы о параллельных. Именно, согласно аксиоме о параллельных евклидовой геометрии через точку, не лежащую на данной прямой а, проходит точно одна прямая, к-рая лежит в одной плоскости с прямой аи не пересекает эту прямую; в геометрии Лобачевского принимается, что таких прямых более одной (затем доказывается, что их бесконечно много).

В геометрии Рпмана принимается аксиома: каждая прямая, лежащая в одной плоскости с данной прямой, пересекает эту прямую. Эта аксиома противоречит системе аксиом евклидовой геометрии с исключением аксиомы о параллельных. Таким образом, система аксиом, лежащая в основе геометрии Римана, необходимо должна отличаться от системы аксиом евклидовой геометрии не только заменой одной аксиомы о параллельных другим утверждением, но и части остальных аксиом. Различными в этих геометриях являются аксиомы, к-рые служат для обоснования т. н. отношений порядка геометрия, элементов. Сущность дела в следующем: в евклидовой геометрии и в геометрии Лобачевского порядок точек на прямой является линейным, т. е. подобным порядку во множестве действительных чисел; в геометрии Римана порядок точек на прямой является циклическим, т. е. подобным порядку во множестве точек окружности. Кроме того, в геометриях Евклида и Лобачевского каждая прямая, лежащая в данной плоскости, разделяет эту плоскость на две части; в геометрии Римана прямая не разделяет плоскость на две части, т. е. любые две точки плоскости, не лежащие на данной прямой, можно соединить в этой плоскости непрерывной дугой, не пересекая данную прямую (топологич. моделью плоскости Римана служит проективная плоскость).

Требования аксиом, определяющих движение фигур, для всех трех геометрий одинаковы.

Примеры теорем Н. г,

1) В геометрии Лобачевского сумма внутренних углов любого треугольника меньше двух прямых; в геометрии Римана эта сумма больше двух прямых (в евклидовой геометрии она равна двум прямым).

2) В геометрии Лобачевского площадь треугольника выражается формулой

где внутренние углы треугольника, Rпостоянная, к-рая определяется выбором единицы измерения площадей. В геометрии Римана имеет место формула

при аналогичном значении символов (в евклидовой геометрии зависимости между площадью треугольника и суммой его углов нет).

3) В геометрии Лобачевского между сторонами и углами треугольника существует ряд зависимостей, напр.:

где sh, ch гиперболические синус и косинус,стороны треугольника,противолежащие им углы, Rпостоянная, определяемая выбором масштаба; для прямоугольного треугольника (с гипотенузой си прямым углом ) имеет место, напр., равенство

При нек-ром согласовании линейного масштаба и единицы измерения площадей постоянная Rв формулах (1), (3), (4) будет одинаковой. Число Rназ. радиусом кривизны плоскости (или пространства) Лобачевского. Число Rпри данном масштабе выражает определенный отрезок в плоскости (пространстве) Лобачевского, к-рый также называют радиусом кривизны. Если масштаб меняется, то меняется число R, но радиус кривизны, как отрезок, остается неизменным. Если радиус кривизны принять за масштабный отрезок, то R=1. В геометрии Римана существуют сходные равенства:

(для произвольного треугольника) и

(для прямоугольного) при аналогичном значении символов. Число Rназ. радиусом кривизны плоскости (или пространств а) Римана. Как видно из формул (4) и (6), в каждой из Н. г. гипотенуза прямоугольного треугольника определяется его углами; более того, в Н. г. стороны любого треугольника определяются его углами, т. е. не существует подобных треугольников, кроме равных (в евклидовой геометрии нет формул, аналогичных формулам (4) и (6), и нет никаких других формул, выражающих линейные величины через угловые). При замене R на iR формулы (1), (3), (4) превращаются в формулы (2), (5), (6); вообще, при замене Rна iR все метрич. формулы геометрии Лобачевского (сохраняющие при этой замене геометрич. смысл) переходят в соответствующие формулы геометрии Римана. При и те и другие дают в пределе формулы евклидовой геометрии (либо теряют смысл). Стремление к бесконечности величины Rозначает, что масштабный отрезок является бесконечно малым по сравнению с радиусом кривизны (как с отрезком). То обстоятельство, что при этом формулы Н. г. переходят в пределе в формулы евклидовой геометрии, означает, что для малых (по сравнению с радиусом кривизны) неевклидовых фигур соотношения между их элементами мало отличаются от евклидовых.

Неевклидовы геометрии в плане дифференциальной геометрии. В каждой из Н. г. дифференциальные свойства плоскости аналогичны дифференциальным свойствам поверхностей евклидова пространства; именно: в неевклидовой плоскости могут быть введены внутренние координаты и, v так, что дифференциал ds дуги кривой, соответствующей дифференциалам координат, определяется равенством:

Пусть, в частности, в качестве координаты ипроизвольной точки Мберется длина перпендикуляра, опущенного из Мна фиксированную прямую, а в качестве координаты vрасстояние от фиксированной точки Оэтой прямой до основания указанного перпендикуляра; величины и, v следует брать со знаком, подобно обычным декартовым координатам. Тогда формула (7) для плоскости Лобачевского будет иметь вид

а для плоскости Римана

R та же постоянная, к-рая входит в формулы предыдущего раздела (радиус кривизны). Правые части (8) и (9) суть метрич. формы поверхностей евклидова пространства, имеющих соответственно постоянную отрицательную кривизну (как, напр., псевдосфера) и постоянную положительную кривизну (как, напр., сфера). Поэтому внутренняя геометрия достаточно малой части плоскости Лобачевского совпадает с внутренней геометрией на соответствующей части поверхности постоянной отрицательной кривизны. Аналогично, внутренняя геометрия достаточно малых частей плоскости Римана реализуется на поверхностях постоянной положительной кривизны (поверхностей, к-рые реализуют геометрию всей плоскости Лобачевского, в евклидовом пространстве нет). При замене Rна iR метрическая форма (8) переходит в метрическую форму (9).

Так как метрич. форма определяет внутреннюю геометрию поверхности, то при такой замене и другие метрич. соотношения геометрии Лобачевского переходят в метрич. соотношения.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):