Поиск в словарях
Искать во всех

Математическая энциклопедия - вероятностей теория

Вероятностей теория

вероятностей теория

математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных к.-л. образом с первыми.

Утверждение о том, что к.-л. событие наступает с вероятностью, равной, напр., 1/2, еще не представляет само по себе окончательной ценности, т. к. мы стремимся к достоверном у знанию. Окончательную познавательную ценность имеют те результаты В. т., к-рые позволяют утверждать, что вероятность наступления к.-л. события Авесьма близка к единице или (что то же самое) вероятность ненаступления события Авесьма мала. В соответствии с принципом "пренебрежения достаточно малыми вероятностями" такое событие справедливо считают практически достоверным. Ниже (в разделе Предельные теоремы) показано, что имеющие научный и практич. интерес выводы такого рода обычно основаны на допущении, что наступление или ненаступление события Азависит от большого числа случайных, мало связанных друг с другом факторов (см. по этому поводу ст. Больших чисел закон). Поэтому можно также сказать, что В. т. есть математич. наука, выясняющая закономерности, к-рые возникают при взаимодействии большого числа случайных факторов.

Предмет теории вероятностей. Для описания закономерной связи между нек-рыми условиями Sи событием А, наступление или ненаступление к-рого при данных условиях может быть точно установлено, естествознание использует обычно одну из следующих двух схем.

а) При каждом осуществлении условий Sнаступает событие А . Такой вид, напр., имеют все законы классич. механики, к-рые утверждают, что при заданных начальных условиях и силах, действующих на тело или систему тел, движение будет происходить однозначно определенным образом.

б) При условиях Sсобытие Аимеет определенную вероятность , равную р. Так. напр., законы радиоактивного излучения утверждают, что для каждого радиоактивного вещества существует определенная вероятность того, что из данного количества вещества за данный промежуток времени распадается к.-л. число Л' атомов.

Назовем частотой события Ав данной серии из писпытаний (т. е. из пповторных осуществлений условий S).отношение числа m тех испытаний, в к-рых Анаступило, к общему их числу п. Наличие у события Апри условиях Sопределенной вероятности, равной р, проявляется в том, что в почти каждой достаточно длинной серии испытаний частота события Априблизительно равна р. Всякая математич. модель, предназначенная для схематич. описания связи между условиями Sи случайным событием А, обычно включает также определенные допущения о характере и степени зависимости испытаний. После того как такие дополнительные допущения (из к-рых наиболее часто встречающимся является независимость испытаний, см. раздел Основные понятия теории вероятностей) сделаны, вышеприведенное расплывчатое утверждение о близости частоты к вероятности может быть количественно уточнено.

Статистич. закономерности, т. е. закономерности, описываемые схемой типа б), были впервые обнаружены на примере азартных игр, подобных игре в кости. Очень давно известны также статпстич. закономерности рождения, смерти (напр., вероятность новорожденному быть мальчиком равна 0,515). Конец 19 в. и l-я пол. 20 в. отмечены открытием большого числа статистич. закономерностей в физике, химии, биологии и др. науках. Следует отметить, что статистич. закономерности возникают и в схемах, не связанных непосредственно с понятием случая, напр., в распределении цифр в таблицах функций и т. п., см. Случайные и псевдослучайные числа;это обстоятельство используют, в частности, при "моделировании" случайных явлений, см. Статистических испытаний метод.

Возможность применения методов В. т. к изучению статистич. закономерностей, относящихся к весьма далеким друг от друга областям науки, основана на том, что вероятности событий всегда удовлетворяют нек-рым простым соотношениям, о к-рых сказано ниже (см. раздел Основные понятия теории вероятностей). Изучение свойств вероятностей событий на основе этих простых соотношений и составляет предмет В. т:

Основные понятия теории вероятностей. Наиболее просто определяются основные понятия В. т. как математич. дисциплины в рамках так наз. элементарной теории вероятностей. Каждое испытание Т, рассматриваемое в элементарной В. т., таково, что оно заканчивается одним и только одним из исходов, или, как говорят,

одним из элементарных событий С каждым исходом wk связывается неотрицательное число вероятность этого исхода. Числа должны при этом в сумме давать единицу. Рассматриваются затем события А, заключающиеся в том, что "наступает или , или или ". Исходы наз. благоприятствующими 'А, и, по определению, полагают вероятность Р(А).события А, равной сумме вероятностей благоприятствующих ему исходов:

Частный случай приводит к формуле

Формула (2) выражает так наз. классическое определение вероятности, в соответствии с к-рым вероятность к.-л. события Аравна отношению числа r исходов, благоприятствующих А , к числу s всех "равно-возможных" исходов. Вычисление вероятностей сводится при этом к подсчету числа благоприятствующих событию Аисходов и часто оказывается трудной комбинаторной задачей (см. Комбинаторные задачи в теории вероятностей).

Пример. При бросании двух игральных костей каждый из 36 возможных исходов может быть обозначен , где число очков, выпадающее на первой кости, на второй. Исходы предполагаются равновероятными. Событию А -"сумма очков равна 4", благоприятствуют три исхода (1; 3), (2; 2), (3; 1). Следовательно,

Вопрос о том, как определяются численные значения вероятностей р k в данной конкретной задаче, лежит по существу за пределами В. т. как чисто математич. дисциплины. В одних случаях выбор этих значений производится на основе обработки результатов большого числа наблюдений. В других случаях возможно теоретич. предсказание вероятностей, с к-рыми те или иные события будут встречаться в данном испытании. Такое предсказание часто основывается на объективной симметрии связи между условиями, в к-рых производится испытание, и исходами этих испытаний, и приводит тогда к формуле (2). Пусть, напр., испытание состоит в подбрасывании игральной кости, представляющей собой кубик из однородного материала. Тогда можно предполагать, что с вероятностью 1/6 кость может упасть на каждую из своих граней. В этом примере предположение о равновероятности исходов находится в согласии с опытом. Такого рода примеры и послужили основой для классич. определения вероятности.

Более тонкое и глубокое объяснение причин равновероятности исходов в нек-рых специальных случаях дается так наз. методом произвольных функций. Суть этого метода можно пояснить следующим образом на примере бросания кости. Пусть опыт поставлен так, что случайные воздействия на кость со стороны воздуха можно считать пренебрежимо малыми. Тогда, если точно даны начальное положение, начальная скорость кости и ее механич. характеристики, движение может быть рассчитано по законам классич. механики, и результат опыта можно предсказать достоверно. Практически начальные условия не могут никогда быть фиксированы с абсолютной точностью и, напр., даже очень малые изменения начальной скорости приводят к другому результату, если только время tот момента подбрасывания до момента падения достаточно велико. Оказывается, что при очень широких допущениях относительно распределения вероятностей начальных значений (отсюда и название метода) вероятность каждого из шести возможных исходов стремится к 1/6 при .

Другой приме р тасование колоды карт с целью достижения равновероятности всех возможных расположений. Здесь переход от одного расположения карт к другому при очередном тасовании обычно носит вероятностный характер. Факт стремления к равновероятности устанавливается методами теории Маркова цепей.

Оба случая могут быть включены в общую эргодическую теорию.

Исходя из к.-л. данных событий, можно определить два новых события: их объединение (сумму) и совмещение (произведение). Событие Вназ. объединением событий если оно имеет вид:

"наступает или или или ".

Событие Сназ. совмещением событий если оно имеет вид: "наступает и ".

Объединение событий обозначают знаком , а совмещение знаком . Таким образом, пишут:

События Аи Вназ. несовместными, если их одновременное осуществление невозможно, т. е. если не существует среди исходов испытания ни одного благоприятствующего и А, и В. Если события Ai отождествить со множествами благоприятствующих им исходов, то события Ви С будут отождествляться с объединением и пересечением соответствующих множеств .

С введенными операциями связаны две основные теоремы В. т.теоремы сложения и умножения вероятностей.

Теорема сложения вероятностей. Если события таковы, что каждые два из них несовместны, то вероятность их объединения равна сумме их вероятностей.

Так, в приведенном выше примере с бросанием двух костей событие В -"сумма очков не превосходит 4", есть объединение трех несовместных событий заключающихся в том, что сумма очков равна соответственно 2, 3, 4. Вероятности этих событий 1/36; 2/36; 3/36. По теореме сложения вероятность Р(В).равна

Условную вероятность события Впри условии Аопределяют формулой

что, как можно показать, находится в полном соответствии со свойствами частот. События наз. независимыми, если условная вероятность каждого из них при условии, что какие-либо из остальных наступили, равна его "безусловной" вероятности (см. также Независимость в теории вероятностей).

Теорема умножения вероятностей. Вероятность совмещения событий равна вероятности события , умноженной на вероятность события , взятую при условии, что наступило, ..., умноженной на вероятность события при условии, что наступили. Для независимых событий теорема умножения приводит к формуле:

т. е. вероятность совмещения независимых событий равна произведению вероятностей этих событий. Формула (3) остается справедливой, если в обеих ее частях нек-рые из событий заменить на противоположные им. Пример. Производится 4 выстрела по цели с вероятностью попадания 0,2 при отдельном выстреле.

Попадания в цель при различных выстрелах предполагаются независимыми событиями. Какова вероятнвсть попадания в цель ровно три раза?

Каждый исход испытания может быть обозначен последовательностью из четырех букв [напр., (у, н, н, у) означает, что прп первом и четвертом выстрелах были попадания (успех), а при втором и третьем попаданий не было (неудача)]. Всего будет 2*2*2*2=16 исходов. В соответствии с предположением о независимости результатов отдельных выстрелов следует для определения вероятностей этих исходов использовать формулу (3) и примечание к ней. Так, вероятность исхода (у, н, н, н) следует положить равной

здесь вероятность промаха при отдельном выстреле. Событию "в цель попадают три раза" благоприятствуют исходы вероятность каждого одна и та же:

следовательно, искомая вероятность равна

Обобщая рассуждения разобранного примера, можно вывести одну из основных формул В. т.: если события независимы и имеют каждое вероятность р, то вероятность наступления ровно тиз них равна

здесь обозначает число сочетаний из пэлементов по т(см. Биномиальное распределение). При больших пвычисления по формуле (4) становятся затруднительными. Пусть в предыдущем примере число выстрелов равно 100, и ставится вопрос об отыскании вероятности хтого, что число попаданий лежит в пределах от 8 до 32. Применение формулы (4) и теоремы сложения дает точное, но практически мало пригодное выражение искомой вероятности

Приближенное значение вероятности х можно найти по Лапласа, теореме

причем ошибка не превосходит 0,0009. Найденный результат показывает, что событие практически достоверно. Это самый простой, но типичный пример использования предельных теорем В. т.

К числу основных формул элементарной В. т. относится также так наз. формула полной вероятности: если события попарно несовместны и их объединение есть достоверное событие, то для любого события Вего вероятность равна сумме

Теорема умножения вероятностей оказывается особенно полезной прп рассмотрении составных испытаний. Говорят, что испытание Тсоставлено из испытаний если каждый исход испытания Тесть совмещение нек-рых исходов соответствующих испытаний Из тех или иных соображений часто бывают известны вероятности

По вероятностям (5) с помощью теоремы умножения могут быть определены вероятности для всех исходов Есоставного испытания, а вместе с тем и вероятности всех событий, связанных с этим испытанием (подобно тому, как это было сделано в разобранном выше примере). Наиболее значительными с практич. точки зрения представляются два типа составных испытаний: а) составляющие испытания независимы, т. е. вероятности (5) равны безусловным вероятностям б) на вероятности исходов к.-л. испытания влияют результаты лишь непосредственно предшествующего испытания, т. е. вероятности (5) равны соответственно: В этом случае говорят оо испытаниях, связанных в цепь Маркова. Вероятности всех событий, связанных с составным испытанием, вполне определяются здесь начальными вероятностями п переходными вероятностями (см. Марковские процессы).

Случайные величины. Если каждому исходу испытания Тпоставлено в соответствие число х r , говорят, что задана случайная величинах. Среди чисел могут быть и равные; совокупность различных значений при , называют совокупностью возможных значений случайной величины. Набор возможных значений случайной величины и соответствующих им вероятностей наз. распределением вероятностей случайной величины. Так, в примере с бросанием двух костей с каждым исходом испытания связывается случайная величина сумма очков на обеих костях. Возможные значения суть соответствующие вероятности равны 1/36, 2/36, 3/36, ..., 2/36, 1/36.

При одновременном изучении нескольких случайных величин вводится понятие их совместного распределения, к-рое задается указыванием возможных значений каждой пз них и вероятностей совмещения событий

где какое-либо из возможных значений величины . Случайные величины наз. независимыми, если при любом выборе события (6) независимы. С помощью совместного распределения случайныхвеличин можно вычислить вероятность любого события, определяемого этими величинами, напр., события

и т. п.

Часто вместо полного задания распределения вероятностей случайной величины предпочитают пользоваться небольшим количеством числовых характеристик. Из них наиболее употребительны математическое ожидание и дисперсия (см. также Момент, Семиинвариант).

В число основных характеристик совместного распределения нескольких случайных величин, наряду с ма-тематич. ожиданиями и дисперсиями этих величин, включаются коэффициенты корреляции и т. п. Смысл перечисленных характеристик в значительной степени разъясняется предельными теоремами (см. раздел Предельные теоремы).

Схема испытаний с конечным числом исходов недостаточна уже для самых простых применений В. т. Так, при изучении случайного разброса точек попаданий снарядов вокруг центра цели, при изучении случайных ошибок, возникающих при измерении к.-л. величины, и т. д. уже невозможно ограничиться испытаниями с конечным числом исходов. При этом в одних случаях результат испытания может быть выражен числом или системой чисел, в других результатом испытания может быть функция (напр., запись изменения давления в данной точке атмосферы за данный промежуток времени), системы функций и т. п.

Следует отметить, что многие данные выше определения н теоремы с соответствующими изменениями приложимы я в этих более общих обстоятельствах, хотя способы задания распределения вероятностей изменяются (см. Распределение вероятностей, Плотность вероятности). Аналогом классич. "равновероятности исходов" здесь служит равномерное распределение рассматриваемых объектов в к.-л. области (именно его имеют в виду, говоря о наудачу взятой из данной области точке, о наудачу взятой секущей данной фигуры и т. п.).

Наиболее серьезное изменение претерпевает определение вероятности, к-рое в элементарном случае давалось формулой (2). В более общих схемах, о к-рых идет речь, события являются объединениями бесконечного числа элементарных событий, вероятность каждого из к-рого может быть равна нулю. В соответствии с этим свойство, выраженное теоремой сложения, не выводится из определения вероятности, а включается в него.

Наиболее распространенная в настоящее время логич. схема построения основ В. т. разработана в 1933 А. Н. Колмогоровым. Основные черты этой схемы следующие. При изучении к.-л. реальной задачи методами В. т. прежде всего выделяется множество Uэлементов и, называемых элементарными событиями. Всякое событие вполне описывается множеством благоприятствующих ему элементарных событий и потому рассматривается как нек-рое множество элементарных событий. С нек-рыми из событий Асвязываются определенные числа Р(А), называемые их вероятностями и удовлетворяющие условиям

1)

2)

3) если события попарно несовместны и нх сумма, то

(аддитивность вероятности).

Для создания полноценной математич. теории требуют, чтобы область определения Р(А).была -алгеброй и чтобы условие 3) выполнялось и для бесконечных последовательностей попарно несовместных событий (счетная аддитивность вероятности). Свойства неотрицательности и счетной аддитивности есть основные свойства меры множества. В. т. может, таким образом, с формальной точки зрения рассматриваться как часть теории меры. Основные понятия В. т. получают при таком подходе новое освещение. Случайные величины цревращаются в измеримые функции, их математич. ожидания в абстрактные интегралы Лебега и т. п. Однако основные проблемы В. т. и теории меры различны. Основным, специфическим для В. т. является понятие независимости событий, испытаний, случайных величин. Наряду с этим В. т. тщательно изучает и такие объекты, как условные распределения, условные математические ожидания и т. п.

В отношении указанной выше схемы можно сделать следующие замечания. В соответствии с ней в основе каждой вероятностной модели лежит вероятностное пространство, рассматриваемое как тройка , где множество элементарных событий, Sвыделенная в X -алгебра подмножеств, Р - распределение вероятностей (счетно аддитивная нормированная мера) на S. Два достижения, связанных с этой схемой,определение вероятностей в бесконечномерных пространствах' (в частности, вероятностей, связанных с бесконечными последовательностями испытаний и случайными процессами) и общее определение условных вероятностей и условных математич. ожиданий (по отношению к данной случайной величине и т. п.).

При последующем развитии В. т. выяснилось, что указанное общее определение вероятностного пространства целесообразно ограничить. Так появились понятия совершенных распределений, плотных распределений и т. п. (см. Распределение вероятностей).

Известны и другие подходы к основным понятиям В. т., напр, аксиоматизация, при к-рой основным объектом становятся нормированные булевы алгебры событий. Основное преимущество (в предположении, что рассматриваемая алгебра полна в метрич. смысле) здесь состоит в том, что для любых направленных систем событий выполняются соотношения

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):