Поиск в словарях
Искать во всех

Математическая энциклопедия - банахова алгебра

Банахова алгебра

банахова алгебра

топологическая алгебра А над полем комплексных чисел, топология к-рой определяется нормой, превращающей Ав банахово пространство, причем умножение элементов непрерывно по каждому из сомножителей. Б. а. наз. коммутативной, если Для всех (см. Коммутативная банахова алгебра). Б. а. Аназ. алгеброй с единицей, если Асодержит такой элемент е, что для любого . Если в Б. а. A нет единицы, то ее можно присоединить, т. е. построить Б. а. A с единицей такую, что Асодержит исходную алгебру Ав качестве замкнутой подалгебры коразмерности 1. В любой Б. а. А с единицей еможно так изменить норму на эквивалентную, чтобы в новой норме выполнялись соотношения (Последующее изложение предполагает, как правило, наличие в алгебре единицы и выполнение приведенных соотношений для нормы.)

Примеры. 1) Пусть X - компактное топологич. пространство, совокупность всех непрерывных комплексных функций на X. Тогда является Б. а. относительно поточечных операций и нормы

2) Множество всех ограниченных линейных операторов на банаховом пространстве образует Б. а. относительно обычных операций сложения и умножения линейных операторов и нормы оператора.

3) Пусть V - ограниченная область в n-мерном комплексном пространстве . Совокупность ограниченных голоморфных функций на Vявляется Б. а. относительно поточечных операций и естественной sup-нормы:

Эта Б. а. содержит замкнутую подалгебру, образованную ограниченными голоморфными функциями на , допускающими непрерывное продолжение на замыкание области . Простейшим примером является алгебра непрерывных в круге функций, аналитических в круге

4) Пусть локально компактная группа и пространство (классов эквивалентности) всех измеримых относительно меры Хаара на абсолютно интегрируемых по этой мере функций, снабженное нормой

(интеграл по левой мере Хаара).

Если в качестве умножения в рассмотреть операцию свертки

то становится Б. а.; если G - абелева локально компактная группа, то Б. а. коммутативна. Б. а. наз. групповой алгеброй локально компактной группы G. Групповая алгебра обладает единицей (относительно свертки) тогда и только тогда, когда Gдискретна.

Если Gкоммутативна, то можно построить точное представление Б. а. , сопоставляя каждой функции преобразование Фурье этой функции, т. е. функцию

на группе характеров группы . Совокупность функций , образует нек-рую алгебру непрерывных функций на (относительно обычных поточечных операций), наз. алгеброй Фурье локально компактной абелевой группы . В частности, если есть группа целых чисел , то есть алгебра непрерывных функции на окружности, разлагающихся в абсолютно сходящийся тригонометрич. ряд.

5) Пусть топологич. группа. Непрерывная комплексная функция на наз. почти периодической, если совокупность ее сдвигов , , образует компактное семейство относительно равномерной сходимости на G. Совокупность почтв периодич. функций образует коммутативную Б. а., относительно поточечных операций и нормы

6) Тело кватернионов не образует Б. а. над полем комплексных чисел, так как произведение элементов Б. а. А должно быть согласовано с умножением на числа: для любых и должно выполняться равенство

к-рое не выполняется в теле кватернионов при ,

Всякая Б. а. с единицей есть топологич. алгебра с непрерывным обратным. Более того, если множество элементов Б. а. А, обладающих (двусторонним) обратным относительно умножения, то топологич. группа в топологии, индуцированной вложением . Если причем

где и ряд сходится абсолютно. Совокупность элементов, обратимых справа (слева) в А, также образует открытое множество в А.

Если в Б. а. Авсякий элемент обладает обратным (или хотя бы левым обратным), то алгебра Аизометрически изоморфна полю комплексных чисел (теорема Гельфанда Мазура).

Поскольку нек-рая окрестность единицы в Б. а. Асостоит из обратимых элементов, то замыкание любого нетривиального идеала есть снова идеал, не совпадающий с А. В частности, максимальный (левый, правый,, двусторонний) идеал замкнут.

Одну из важных задач теории Б. а. составляет задача описания замкнутых идеалов в Б. а. В ряде случаев она решается просто. В алгебре С(X).(см. пример 1) всякий замкнутый идеал имеет вид где Y - замкнутое множество в X. Если А - алгебра всех, ограниченных линейных операторов в сепарабельном бесконечномерном гильбертовом пространстве, то единственным замкнутым двусторонним идеалом в А служат идеал вполне непрерывных операторов.

Элемент имеет левый (правый) обратный тогда и только тогда, когда он не содержится ни в каком максимальном левом (правом) идеале.

Пересечение всех левых максимальных идеалов в Асовпадает с пересечением всех правых максимальных идеалов; это пересечение наз. радикалом алгебры Аи обозначается . Элемент принадлежит тогда и только тогда, когда для любого Алгебры, для к-рых , наз. полупростыми. Алгебры и групповые алгебры полупросты. Полупростыми являются все неприводимые (т. е. не имеющие нетривиального инвариантного подпространства) замкнутые подалгебры алгебры всех ограниченных линейных операторов в банаховом пространстве.

Резольвентой элемента наз. функция

определенная на множестве тех , для к-рых (двусторонний) обратный к существует. Область существования резольвенты содержит все точки . Максимальная область существования резольвенты есть открытое множество; на этом множестве резольвента непрерывна п даже аналитична, причем Кроме того, имеет место тождество Гильберта

Дополнение к области существования резольвенты наз. спектром элемента аиобозначается . Для любого множество непусто, замкнуто и ограничено.

Если то множества и могут не совпадать, но

Число

наз. спектральным радиусом элемента ; имеет место формула Гельфанда

где предел справа всегда существует. Если то обратное верно, вообще говоря, лишь в коммутативных Б. а., радикал к-рых совпадает с множеством обобщенных нильпотентов, т. е. элементов для к-рых В любой Б. а. справедливы соотношения если Акоммутативна, то

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):